MRI Core WW ADNI Vancouver 2012

Bret Borowski - Mayo Matt Bernstein - Mayo Jeff Gunter – Mayo Clifford Jack - Mayo David Jones - Mayo Kejal Kantarci - Mayo Denise Reyes – Mayo Matt Senjem – Mayo Prashanthi Vemuri - Mayo Chad Ward – Mayo

Charlie DeCarli – UCD Nick Fox – UCL Norbert Schuff – UCSF/VA Paul Thompson – UCLA

ADNI GO/2 MRI 3T Protocol CORE

 3D T1 volume un - & 2x accelerated (MPRAGE on Siemens and Phillips, IR SPGR on GE) – morphmetry
 FLAIR –cerebro vascular disease grading
 long TE 2D gradient echo – ARIA-H grading

EXPERIMENTAL

- Siemens (30 sites) ASL perfusion (20), (and high res T2 hipp subfield), committed to both (?)
- GE (14 sites) DTI
- Phillips (12 sites) task free-fMRI

Accelerated vs. Non-Accelerated (ADNI)

Tensor-based Morphometry (TBM) numerical summaries and 3-dimensional maps of cumulative brain atrophy

Chris Ching, Xue Hua, Derrek Hibar, Paul Thompson

Laboratory of Neuro Imaging

March 2012

EMCI – no difference accel vs un accel, TBM rates

We found no significant difference between numerical summaries derived from accelerated and nonaccelerated scans at 6 and 12 months, using the TBM method (p>.38, R>.69).

Cumulative Atrophy	2 tail paired t-test p-value	correlation coef.
Stat ROI	0.78	0.69
Temporal ROI	0.51	0.74
Temporal GM ROI	0.44	0.74
	12mo	
Cumulative Atrophy	12mo 2 tail paired t-test p-value	correlation coef.
Cumulative Atrophy Stat ROI	12mo 2 tail paired t-test p-value 0.75	correlation coef. 0.77
Cumulative Atrophy Stat ROI Temporal ROI	12mo2 tail paired t-test p-value0.750.41	correlation coef.0.770.70

6mo

6 and 12 month n80's - Емсі

6mo

	Accel Stat ROI	NonAccel Stat ROI	Accel Temporal ROI	NonAccel Temporal ROI	Accel Temporal GM ROI	NonAccel Temporal GM ROI
% Tissue atrophy	0.64	0.62	0.30	0.27	0.35	0.30
Std	0.85	0.80	0.64	0.61	0.80	0.77
N80 [CI]	441 [252,1401]	419 [272, 782]	1127 [540, 3922]	1280 [630, 4742]	1342 [613, 5119]	1637 [727, 6664]

12mo

	Accel Stat ROI	NonAccel Stat ROI	Accel Temporal ROI	NonAccel Temporal ROI	Accel Temporal GM ROI	NonAccel Temporal GM ROI
% Tissue atrophy	1.10	1.08	0.55	0.49	0.62	0.55
Std	0.87	0.97	0.67	0.64	0.82	0.83
N80 [CI]	157 [107, 267]	201 [128, 465]	382 [224, 856]	421 [250, 818]	435 [245, 1006]	556 [306, 1319]

Accelerated scans provide lower n80's (except for 6mo Stat ROI), but given the wide spread of the confidence intervals, this difference is not significant.

Average maps of cumulative brain atrophy - EMCI

6mo Accelerated

12mo Accelerated

6mo Non-Accelerated

12mo Non-Accelerated

ADNI-GO and ADNI-2 results

University College London Dementia Research Centre Institute of Neurology 12 April 2012

Cross sectional Accelerated vs. Non-accelerated for ADNIGO EMCI subjects

	n	Brain (ml) Accelerated	Brain (ml) Non-Accel.	Pairwise p val	Ventricles (ml) Accelerated	Ventricles (ml) Non-Accel.	Pairwise p val
Screening	58	1088 ± 123	1097 ± 126	< 0.001	36.5 ± 25.4	36.5 ± 25.6	0.39
Month 6	35	1068 ± 110	1078 ± 111	< 0.001	36.8 ± 24.5	36.9 ± 24.8	0.56
Month 12	7	1115 ± 117	1123 ± 118	0.01	40.1 ± 21.9	40.1 ± 22.0	0.46

Brain volume:

- Consistently lower brain volume (~1%) in accelerated scans compared to non-accelerated
- Largest difference (> 30 mL): accelerated scan was considered very borderline by DRC due to motion.

Ventricle volume:

• No significant differences between accelerated and nonaccelerated scan.

Longitudinal Accelerated vs. Non-accelerated for ADNIGO EMCI subjects

	n	Brain KN-BSI (% of baseline) Accelerated	Brain KN-BSI (% of baseline) Non-accel	p val	VBSI (mL) Accelerated	VBSI (mL) Non-Accel	p val
Month 6	32	1.037 ± 1.261%	0.892 ± 1.396%	0.86	0.83 ± 1.56	0.80 ± 1.52	0.79
Month 12	6	0.369 ± 0.772%	0.618 ± 0.633%	0.10	0.98 ± 1.45	1.03 ± 1.53	0.30

BBSI and VBSI calculated from EMCI subjects in ADNI-GO Note: excludes subjects where there is no screening and only 1 x scan for each protocol per visit, hence slightly lower numbers than cross sectional

ADNI 2 and ADNI GO STAND-scores

Prashanthi Vemuri, Matthew Senjem, Jeffrey Gunter, Clifford Jack MAYO CLINIC ROCHESTER

TBM-SyN & Longitudinal STANDscores

- 1) **"TBM-SyN":** Unbiased, intra-subject longitudinal nonlinear registration
 - Annualized log of Jacobian determinant from Symmetric Normalization (SyN) [Avants et al. Med Image Anal, 2008].
 - **ROI** level summary statistics, e.g. mean annualized change in each ROI.
- 2) "Longitudinal-STAND": Machine learning method for high classification accuracy & selecting ROIs for power calculations
 - Application of SVM to TBM-SyN ROI data
 - Independent data set for training and ROI selection, from Mayo Clinic Study of Aging: 51 CN (PIB –ve) and 51 AD subjects

Longitudinal STAND-scores in ADNI GO and ADNI-2 3 T subjects

6 Month Estimates:

AUC and 95 % CI separation for AD and CN =0.86 [0.65 1.0] **3 Month Estimates:**

 AUC and 95 % CI separation for AD and CN =0.635 [0.48 0.79]

Sample Size Estimates based on TBM-SyN in selected ROIs:

	CN	EMCI	LMCI	AD
3 mo.	359 (227, 655)	427 (296, 665)	230 (136, 475)	188 (75, 720)
	N = 79	N = 180	N = 51	N = 17
6 то.	244 (124, 587)	431 (281, 761)	86 (48, 170)	*
	N = 34	N = 126	N = 20	N = 5
12 mo.	* N = 1	133 N = 61		

Table 1. Sample size with bootstrap 95% CI to detect 25% reduction in atrophy rate with 80% power and alpha = 0.05

* Too few subjects

sMRI - summary

- Some evidence that accelerated sMRI is equivalent to non accelerated. But evidence is not uniform further study, esp cross vendor
- A reasonable atrophy signal is seen at 3 months in CN, EMCI, LMCI and AD
- Sample sizes for EMCI at 3 and 6 months ~ 400s, and ~ 150 – 200 at 12 months

ADNI GO/2 MRI 3T Protocol CORE

 3D T1 volume un - & 2x accelerated (MPRAGE on Siemens and Phillips, IR SPGR on GE) – morphmetry
 FLAIR –cerebro vascular disease grading
 long TE 2D gradient echo – ARIA-H grading

EXPERIMENTAL

- Siemens (30 sites) ASL perfusion (20), (and high res T2 hipp subfield), committed to both (?)
- GE (14 sites) DTI
- Phillips (12 sites) task free-fMRI

Analysis of Vascular Factors in ADNI II

Charles DeCarli, Chris Swartz, Baljeet Singh, Oliver Martinez, Evan Fletcher, Jing He, Owen Carmichael

Differences in WMH* at basline

* Log normalized volumes as percentage of TCV

MR Infarct Distribution

ADNI GO/2 MRI 3T Protocol CORE

 3D T1 volume un - & 2x accelerated (MPRAGE on Siemens and Phillips, IR SPGR on GE) – morphmetry
 FLAIR –cerebro vascular disease grading
 long TE 2D gradient echo – ARIA-H grading

EXPERIMENTAL

- Siemens (30 sites) ASL perfusion (20), (and high res T2 hipp subfield), committed to both (?)
- GE (14 sites) DTI
- Phillips (12 sites) task free-fMRI

ARIA-H Marking SW application – J Gunter

- Spatial registration and display of all volumes in subject time series
- Each MCH is tracked as an individual entity over time
- Definite vs possible at each time point
- x,y,x coordinates of each
- Marking done first by trained image analysts, all positive findings verified by MD

Few MCH

305 MCH (EMCI)

summary

- prevalence of one or more definite microhemorrhages 25%
 increasing with age (0.22; p<0.001) and Aβ load (florbetapir) (0.16; p<0.001)
- prevalence of superficial siderosis 1%
- topographic densities highest in the occipital lobes and lowest in the frontal lobes and deep/infratentorial
- APOE ɛ4 and ɛ2 carriers had greater numbers of microhemorrhages compared to ɛ3 homozygotes
- greater number of microhemorrhages at baseline were associated with a higher incidence of subsequent microhemorrhages (rank correlation =0.43; P <0.001)</p>

ADNI GO/2 MRI 3T Protocol CORE

 3D T1 volume un - & 2x accelerated (MPRAGE on Siemens and Phillips, IR SPGR on GE) – morphmetry
 FLAIR –cerebro vascular disease grading
 long TE 2D gradient echo – ARIA-H grading

EXPERIMENTAL

- Siemens (30 sites) ASL perfusion (20), (and high res T2 hipp subfield), committed to both (?)
- GE (14 sites) DTI
- Phillips (12 sites) task free-fMRI

ADNI-2 – Diffusion Imaging Year 1

Talia Nir, Neda Jahanshad, Paul Thompson (Thompson lab, UCLA)

Cross Sectional Differences AD (N=15) vs Controls (N=29)

Regions of significant difference (corrected p<0.05) between AD and normal elderly groups after controlling for sex and age. As expected, the AD group has lower FA and higher MD than controls throughout the WM. Type I errors controlled using the searchlight false discovery rate (sFDR) method (Langers et al., 2007).

Cross Sectional Differences AD (N=15) vs eMCI (N=57 early MCI)

Regions of significant difference (corrected p< .05) between AD and eMCI groups after controlling for sex and age. As predicted, the AD group has lower FA and higher MD than eMCI throughout. Type I errors controlled using the searchlight false discovery rate (sFDR) method (Langers et al., 2007).

Regional differences in Average MD

Which DTI-derived measures best discriminate AD vs Controls?

• Cumulative distribution plot of all 42 ROI p-values obtained when comparing AD to controls

 Diffusivity measures other than FA are more powerful for discriminating AD vs. controls

• Particularly MD and **axial diffusivity**, suggesting more axonal damage

ADNI GO/2 MRI 3T Protocol CORE

 3D T1 volume un - & 2x accelerated (MPRAGE on Siemens and Phillips, IR SPGR on GE) – morphmetry
 FLAIR –cerebro vascular disease grading
 long TE 2D gradient echo – ARIA-H grading

EXPERIMENTAL

- Siemens (30 sites) ASL perfusion (20), (and high res T2 hipp subfield), committed to both (?)
- GE (14 sites) DTI
- Phillips (12 sites) task free-fMRI

ADNI2 Arterial Spin Labeling (ASL) Perfusion MRI Preliminary Results April 2012

Miriam Hartig, Yu Zhang, Daniel Cuneo, Derek Flenniken, Diana Truran, Duygu Tosun, Norbert Schuff SFVAMC/UCSF Lab

Baseline - Regional CBF Differences Between MCI and Control

Hypo-perfusion in MCI vs. CN

Regions of significant differences between MCI and CN after controlling for sex, age and global mean CBF. [smooth = 8mm] Highlighted are regions with uncorrected p < 0.001 and cluster size > 20 voxels.

Hyper-perfusion in MCI vs. CN

Baseline - Regional CBF Differences Between EMCI and Control

Hyper-perfusion in EMCI vs. CN

Hypo-perfusion in EMCI vs. CN

Regions of significant differences between EMCI and CN after controlling for sex, age and global mean CBF. [smooth = 8mm]

Highlighted are regions with uncorrected p < 0.001 and cluster size > 20 voxels.

Group Classification

Receiver Operator Characteristic

*AUC: area under the ROC curve Mean ± 95% confidence intervals

Group classification using CBF from 50 regions

- 4-fold cross-validation
- LASSO regularization

Main cortical regions contributing:

- Cuneus
- Middle Frontal
- Temporal Transverse

ADNI GO/2 MRI 3T Protocol CORE

 3D T1 volume un - & 2x accelerated (MPRAGE on Siemens and Phillips, IR SPGR on GE) – morphmetry
 FLAIR –cerebro vascular disease grading
 long TE 2D gradient echo – ARIA-H grading

EXPERIMENTAL

- Siemens (30 sites) ASL perfusion (20), (and high res T2 hipp subfield), committed to both (?)
- GE (14 sites) DTI
- Phillips (12 sites) task free-fMRI

TF-fMRI Metrics

Functional atlas from 892 Mayo Clinic Study of Aging CN

- Functional Atlas extraction of ROI to Brain FC
- Functional Atlas extraction of ReHo
- Functional Atlas FC Matrix

ADNI Control Subject

ROI to Brain

ReHo

FC Matrix

Classification ADNI <u>CN vs EMCI</u>

Feature Selection: aDMN ROI to Brain FC

- 2 Features Selected
 - aDMN to right salience network*
 - aDMN to right superior temporal*

Feature Selection: ReHo

- 2 Features Selected
 - Right dDMN medial ROI
 - Left deep gray ROI

Feature Selection: FC Matrix

- 5 Features Selected
 - Right attention to right parietal operculum
 - Right dDMN lateral ROI to right tDMN
 - Right deep gray to left dorsal visual stream*
 - Right posterior limbic to right face
 - Right posterior limbic to right anterior limbic
- Combined Features Cross Validation
 - 4 Fold CV Accuracy Rate [95% CI] =72.2% [72.1,72.4]

*<u>CN vs EMCI</u> discriminant features with significant across group ANOVA (i.e. CN,EMCI,MCI,AD).

Summary

- TF-fMRI is complex different ways to analyze the data, different metrics can be extracted from each analysis method, the individual features can be combined in many ways
- relationships between some fMRI metrics and disease severity appear non-linear, not monotonic
- there is evidence for a TF-fMRI signal separating CN from EMCI
- More work to be done to identify optimal ways to analyze data in clinical trial context - single value metrics as outcome measures